Skip to contents

Quickly inspect the missing values in a dataset by producing a bar plot.

Usage

inspect_missing(
  data,
  vars = NULL,
  na_colour = "red",
  fill_colour = "grey30",
  title = NULL,
  ...
)

Arguments

data

A non-empty data frame or tibble.

vars

A character vector of column names to inspect. Default value NULL will produce plots for every variable in the data.

na_colour

An R-supported colour or hex value to indicate missing values. Default value is "red".

fill_colour

An R-supported colour or hex value to indicate non-missing values. Default value is "grey30".

title

A non-empty string for the plot title. Default value NULL results in no title being displayed.

...

Additional ggplot2 arguments passed to geom_bar layer to modify plot outputs.

Value

A ggplot2 object (a bar plot) showing the proportion of missingness for the specified variables.

Details

inspect_missing uses ggplot2 to produce a bar plot representing the proportion of missing and non-missing values for each column in the dataset. Any valid arguments that may be passed to a geom_bar layer in ggplot2 may also be passed to inspect_missing via ... to customize the plot appearance.

Examples

# Basic usage
inspect_missing(airquality)


# Advanced usage: Manually specify variables and modify plot output
inspect_missing(data = airquality,
                vars = c("Ozone", "Solar.R"),
                na_colour = "green",
                fill_colour = "blue",
                alpha = 0.5)